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APPLICATION OF VARIABLE MODULI MODELS TO
SOIL BEHAVIORt

I\A'\ NELS()!\"t and MELVIN L. BAR()!'i~

Paul Weldlinger. Consulting Engmeer. !'iew York

Abstract~-A mathematical material model is described m which the basic constitutIve law is an isotropic relatIOn
between the increments of stress and strain. No unique stress-strain relation. per S£'. exists. Neither is there an
explicit yield condition. The bulk and shear moduli. however. are functions of the stress and.or strain invariants.

The behavior of two simple models of this type is examined for the two generally available soil tests. i.e.
uniaxial stram and triaxial compressIOn. In each case qualitative agreement with the behavior of real soils is
obtained. For one model. unloading and reloading is also considered.

The latter model is also compared with a simple elastic-plastic model. Many sImilarities between the two
become apparent. but so do significant differences. e.g. the direction of the "plastic" strain increment.
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constants
Young's modulus
mean strain
initial mean strain in triaxial test
components of deviatoric strain tensor
principal deviatoric strains
shear modulus
initial shear modulus
shear modulus in unloading
step function
second invariant of stress deviator
bulk modulus
constants appearing in bulk modulus
bulk modulus in loadmg, unloading
constant related to cohesion
pressure
components of deviatoric stress tensor
principal deviatoric stresses
components of particle velocity
coefficient in Prager-Drucker yield condition
constant. 2(1 + ro)/(1 - 2\'0)
constants in combmed variable shear modulus
Kronecker delta
measured axial strain in triaxial test
components of strain tensor
principal strains
volumetric strain. 3c
Poisson's ratio

t This paper is the result of studIes sponsored by the U.S. Army Engineer Waterways Experiment Station.
Vicksburg, Mississippi.

t Senior Research Engineer.
~ Partner and Adjunct Professor of Civil Engineering, Columbia University.
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l. fNTRODUCTIO:\

EARL Y attemph to mathematically modd the behavior of ~oils under both ~taL1\: and ,)r
dynamic loadings were based on the assumption that the soil could be approximated by
a linear elastic material. Such models were of course of l:xtremely limited validity. They
were subsequently replaced by relatively simple elastic-plastic models of the von \tlises
or Prager-Drucker. Rd. [I]. type in which a yield condition was used to describe the
material failure under specific combinations of the shear stresses and pressure. At the
same time. nonlinear elastic models were considered. e.g. Ref. [2], but these also were not
too successful. More recently. in connection with the study of ground shock effects from
explosive sources. a series of more advanced elastic--plastic mod.::!s have been used to
model the action of the soil over a rather wide variation of applied pressures. Refs.
In these models the yield condition depended upon tht, pressure in a general way and
arbitrary nonlinear pressure-volume relations were used. Different pressure-vol urn.:'
relations were used for initial loading and for subsequent unloading and reloading. The
various stages in the historical development of these advanced elastic-plastic models are
described in Ref- [3]. Generally. these models reproduce actual soil behavior quite ade
quately in both static and dynamic uniaxial strain tests. However. as pointed out in Ref.
[3]. they do not reproduce the behavior in triaxial compression tests. Although the elastic
ideally plastic models (nonstrain hardening) may give the proper failure stress for a triaxial
test. they do not give the correct stress strain behavior of the material as it approaches
failure.

The present study is concerned with the development of mathematical models which
contain no explicit yield condition. but which have bulk and shear moduli which an:
functions of the invariants of the stress and or stram tensors. The behaviL)r of two simple
models of thiS type are examll1ed for the two generally available soil tests. i.e. uniaxial
strain and triaxial compression_ In each case qualit:J.tive agreement is obtained \\ilh thc
beh.lVIOr \)1 real soib.

Finally_ the second m"dei is compared \\ tlh a Simple elastic plastIc modeL \!an;
similarities between the models become app<'rent. but then: are also Significant ditkr·~'nccs

which arc discussed.

2. '10DEL DESCRIPTIO"";

I (;('Ilcru! 'iJlU!If/OiL'

The mathematical \kscriptll'l1 ,)f the fI1l1lki i, in term, (,f th<: Incremental sIres,> ,train
relatIons
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where -'ij and Cjj are the deviatoric stress and strain. respectively. and [J and et are the
mean stress and strain. In writing equation \ I) relating the increments of deviatoric stress
and strain. an implicit assumption is made that the material is isotropic. Of course. real
soils. being the results of largely directional geological processes. are often anisotropic.
Moreover. the separation of the constitutive relation into deviatoric and volumetric parts.
while particularly convenient. automatically precludes an) coupling between them
as is observed in certain granular media. However. for the applications described in
Section 1. equations (I) and (21 will be considered a sufficiently accurate material
description.

Both the shear modulus and the bulk modulus will be assumed to depend upon the
stress and or strain invariants. In general. different functions G and K apply in initial
loading and subsequent unloading and reloading. The present discussion will be largel)
confined to the case of initial loading.

It is noted that. even in cases of initial loading. there is not in general a unique stress
strain relation. The final state of strain depends not only upon the final state of stress. but
also upon the stress path used to reach the tlnal state. In this sense. the variable moduli
material cannot be considered a nonlinear elastic material where such a unique stress
strain relatioll would exist.

The description of a material in terms of incremental stress-strain relations has been
termed a "hypo-elastic material". Refs. [6 and 7]. The present variable moduli material
may be considered a special case of an isotropic hypo-elastic material in which the tensor
relating stress and strain increments depends on the invariants. but not on the stress (or
strain) tensor itself. Of course. the present material is in general irreversible even for in
cremental loading.

In writing equations (1) and (2) the strain rate is \vell defined as the deformation rate
tensor

i;. = ~(tl. . + tI·)I) _ t.} ).J

even for large strains. For dynamic problems with large rotations Jaumann's definition
of the stress rate. Ref. [6J. should be used. In a general numerical scheme this could be
done. In this paper. however, small strains and rotations as well as quasi-static loading
will be assumed.

A particular model will be discussed from the standpoint of the uniaxial strain and
triaxial compression tests. since these are the soil tests which are generally available.
Typical experimental curves for each test are shown in Fig. 1. Other examples may be seen
in Refs. [8 and 9].

The stress-strain curve in the uniaxial strain case. Fig. l(a), typically (but not always)
shows a reversal in curvature on loading. On unloading, the slope is almost constant and
is much larger than the slope during initial loading, except for a sharp tail in the low stress
range. Reloading, except for a small hysteresis loop. generally follows the unloading curve
up to the previous maximum stress, and then continues along the initial loading curve.
The lateral stress (j 3' required to maintain uniaxial strain. is sometimes also measured.
Fig. l(b).

t In this paper compressive stress and strain are defined as positive in accordance with the usual Soil Mechanics
Convention.
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FI(i. I Typical cxperimenui results,

TypIcal experimental triaxial results. Fig. IIc). have the following characterisllcs.
L The stress-strain eurve at a given value elf IT, is concave downward.
~ At some point a horizontal tangent. "failure". is reached.
~. i--\t a higher value of (jJ the initial slope and the stress difference at failure. f r; 1 - (:.1 1m ,l.\ .

both increase.
Lnloading and reloading information in triaxial compression IS l)f!en not a\ailabk.
EXisting data indicates that if unloading ibefore failure) occurs. the unloading ~';,Jnc: I'

much steeper than the loading curve. There IS some \.juestion. ho\\e\(~r. concermf1il th('

behavior of soils in the tria:oal contigurallon during reloading.
B} plotting the \lloht's circles at failure for different lateral stresses (j\. the: \1cdlf

c:nvelope. Fig, lldl. is obtained. ThiS emeklpe is generally t.':ither a straight line I(elr ~,)m(.·

dry :iands) or is conea ve Jown\vard (for partially saturated soil-; L

fn Ref. r the models were discussed from the standpoint of the two t",sts: one In .\ hid,
J\. ~ll1d C; were both funetions of the stram imarianb. and a second modd in whiCh 1\.
depended upon the volumetric strain but wh~re (J depended upon the ~tr<.'ss In \arLUlC>
Both models <.'xhibited the salient features t)f both tests. In the present paper t'nly the: laltc'.
or the ,.:<)mbined strcs.;~strain \ariabk mtc,luli model. i·, dlsclbs,',l
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'") Comhined strcss-.\tru;11 ['uriahle moduli model

The combined stress-strain variable moduli model is defined (in initial loading) by a
bulk modulus K which is a function of the mean strain e. and a shear modulus G which is
a function of first two stress invariants. or more specifically the pressure p and the square
root of the second invariant of the stress deviator "\ J~. The simplest such relations which
satisfy the test results described in Section I are

(51

Equations (4) and (5) may be thought of as the first terms in the series expansions of more
general analytic functions K and G of the stress and strain invariants. The quantity "\ J~
was used. rather than J 2 itself. since it is of the same order as p and the components of the
stress tensor. At zero stress and strain. the bulk and shear moduli reduce respectively to
K o and Go. the "linear elastic" values. which are related in terms of the "elastic" Poisson's
ratio Vo

K o 2(1+1'01 f3
Go 3( 1- 21'0) 3

although the ratio K/G is not. in general, constant. With i'l positive and ~I negative. the
material hardens in shear with increasing pressure and softens with increasing shear stress.

The bulk modulus was chosen to be a quadratic in e rather than in p, since the typical
uniaxial strain test curve suggests that the axial stress is a cubic function of the axial strain.
Since the bulk modulus K refers to the incremental pressure-volumetric strain relation.

p = 3Kc

the pressure may be obtained by direct integration of equation (2) as

[See equation (2)J

p = J: 3K(~)d~ = 3Koc+1Klc2+K2e3. (7)

Since for initial loading, the pressure is a monotonic function of e, a unique inverse e(p)

exists. Thus, the bulk modulus K may also be written as

K = K(p) = K[e(p)]. (8)

Therefore, equation (4) is equivalent to writing K as a function of p.
(a) Uniaxial strain. By using stress symmetry and vanishing of two of the principal

strain rates. it may be shown that in uniaxial strain

(9)

Noting that
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substitution of equation (7) into equation (9) yidds the first \1rder ilOnhomogeneous dif
ferential equation

dO" 1 ~ , ",~ " j',,'r"" !., ,,:.) ,',_.-' l.ll ,(J =! ,K ~-rll 1-' -rl'\, \ -"" "',Je -'\,' . l 1 - l)' !} l ~ L i) _' 1 :: j j

,1

\.' I 1
"1 :~ 1 . t' I III I

Usmg the initial condition that stress and strain vanish simll]l~mL',),!>I:, thL' solUlion !"r
stress as an explicit function of strain is found by ll1t,:guting: eljll~dlon (l ill

5.., i K' , ~ \" K)/_ -:\'.:l.ul, _", __ ,~,\+,l K .... -.~ .. >t'
I ~I \,1 :2 "I ,j ! \(3):JI

1 ~ 1 I

"J I

\ 'K " , .., 1-: '
.' , \..l',)L.I I - \"',c,) +, :'! K .. i ,,2 _ -::~:, 2,·,,·1'

I - i 1 .." - -, _' ... ~

\ : I I - ';'i \ \, I,' I', I \

Closed form expressions for the remaming stress quantltle" 'j ,il,';"" ,Ir.: ,'asl!' l,bLunabk
from equations (7) and III~,

"
I K'

/; J.-; .,c.
\, 1. I:

" II _~ ".

,\ . (i"

I\, (3 rC
I

Finally. from equatl0n III L the slope l1f tn.: ,;tress stram cune '" an\ !"'Inl. .'1' ,he tangclH
'constrained) m,~dulus is found II) be

r ~K,
-I ..

i \, I.'

-:'K, '.. I
i ~ ( I

! : J.
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(l5 )

(b I Tl'illxill/ STress. In the triaxial stress configuration the second invariant of the stress
deviators is simply related to the stress difference by

'\ :. 1
'\ J; = --:;-5 1 = -~(O'l -0'3)'

- '\ -'

Using the relation p = (a 1 + 20'3 ,'3 and equation (15). the expression for thc shear modulus
becomes

(16)

(17)

Thus. the strain dcviator 1'1 may be found by integration

JdSI ~'" d~

<'I = 2G = J"3 :'G('+0'3(2~'I-,\/(3);Il+~(~'I+v(3t·/d
since 1:'1 = 0 when er l = 0'3 (hydrostatic compression). From equation (\ 7). <'I is obtained
as an explicit function of the stresses 0'1 and er3

_ 1 I [3G O +0'3(2,/ I -,\i(3 J;d+0'1(i'1 +~(3);tlJe l - ,. _ n .
~'1 +'V(3)~'1 3(GO+','1 0 3)

A necessary condition for G to decrease as a 1 increases, see equation (16), is

(18)

(19)

so that the argument of the logarithmic function in equation (18) is always less than one.
and 1:'1 is always positivc. Alternatively. equation (18) may be written as

1 [ G ]e 1 = . _ In --
'/1 + ,\/(3)~'1 Ginitial

(20)

where Giniti.l = Go + ~'1 0'3 is the initial value of G, i.e. the value under hydrostatic conditions.
From equation (20), it is evident that 1:'1 becomes arbitrarily large (as does Cd as G ap
proaches zero, or [from equation (l6)J when

(0 1 - °3 )max =
3(Go+','1 (3)

~'I +v/(3)~1 .
(21)

It is seen that for (° 1 - °3) larger than (0 1 - (3)max' the strain becomes imaginary, that is, the
strain cannot exist. Thus, equation (21) expresses the maximum stress difference in triaxial
compression for a given lateral stress er 3' It should also be noted that the slope of the tri
axial stress-strain curve

9KG
3K+G == Et (22)

i.e. the local Young's modulus. goes to zero when G -> O. so that the stress difference
fer 1- 03 )m.x represents a point of horizontal tangency, i.e. "failure".

t It can be shown that equation (22) applies for quile general functions. K and G.



The measured strain .1;:1 is simply related to the strain deviator <'I' the mean strain (',
and the initial (hydrostatic) mean strain <"j by

where en is found for the given lateral stress (J\ by solving equatlOn (7) for e == t'" With
/) = (i, ' Equations (·h (51. 1181. (::11, (13) and the small positive root t' of the cubic equatlun
OJ completely define the system in triaxial stress lor all valid states 1)1' ",ll"l 17, i

(1)1 - (i3Imax]'
If the Mohr failure envelope were plotted for this materiaL it is evident from equat1(.'11

(21) that the plot would be a straight line passing above the origin, similar to the yield
condition for a Prager-Drucker materiaL This similarity will be discussed bta m the
paper.

(c) Choice OiCOIl8tWJl~. If all stress quantities are nondimensionalized with respect to the
initial bulk modulus. K il • then five parameters remain to fuJly describe the model. namdy.

Col ~1, K,
K" K,,' .1' .1' K,,'

The first of these is inherently POSitive and is related to the initial POisson's ratio I., tl)

equation (6\. The higher order terms in the hulk modulus K I K ,) and K 2 K" rna:, be
positive or negative. However. the values are restricted by the condition K > U. If f.. 1 "erl'
negative and K:. positive, the requirement that the minimum bulk modulus be po~itivt'

requires that

The fact that ~'l > 0 and ~c 1 < 0 for physical reasons has ~lready been discussed. as has tllL'

inequality between them. equation (19l.
To further restrict the range of the five matcrial parameters. one requires the initial

slope in triaxial compression to increase with lateral stress. Differentiating equation (22!
with respect to (J,\

1 dE 3K 2(dC d(J,)+(J2(dK d(JJ)

(,~K ..:..C

and requiring the result to he positive when tTl = ",. yields the inequalil\

For equation (27) to hold in the limit as c', approaches zero the inequality

must be satistied. Equation i2S1 IS a necessan condilll)ll for thL' JI1llIal slope in the tn~l\j~ll

test to increase with increaSIng lateral stres~ 17, .

If the initial cunature II1 the uniaXIal strain kst were negalive. then the condition

must be satIslied.

-+ - r~
-.' 1 - L'

'\ ~ J'\ , !

t
...'.' I" 'l\, . ,I
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Equation (291 is obtained by evaluating the derivative of equation (14) at e = O. An
attempt to find an analytic expression for the inflection point leads to a transcendental
equation and will not be discussed further.

(dl Unloading and reloading. The model for unloading and subsequent reloading of
variable moduli materials is presently at an early stage of development. Experimentally.
Fig. I(a). the uniaxial strain unloading curve has a slope much larger than the loading slope.
which is approximately constant until very low stress levels are reached. Reloading generally
follows the unloading curve up to a point close to the previous maximum stress. If the
stress is increased further. the stress-strain curve approaches the continuation of the
original loading curve.

In a completely general three dimensional configuration the terms "loading" and
"unloading" no longer have such clear cut meanings. It is possible that the material will
be loading in shear U2 > 0) and unloading in pressure (jJ < 0) simultaneously. In fact. if
one studies the (j 3 - (j I curve for as simple a geometry as a uniaxial strain test. Fig. I(b).
it can be shown that on unloading. the deviator $1 = ~(jl - lT3) (originally positive) first
decreases. then changes sign and continues to decrease (increases negatively) until a
minimum is reached at a very low stress level. Beyond this point. 05\ appears to increase
slightly, i.e. to decrease in absolute value. At the same time. the pressure p = ((jl +2(j3)/3

and the strain £1 both decrease monotonically during unloading. Clearly, the sharp tails
found experimentally upon unloading at very low stress levels in both the uniaxial stress
strain curve, Fig. l(a), and the radial stress-axial stress curve. Fig. l(b). are related to this
unusual behavior of 05 1 , Elastic-plastic models in which the yield condition is a function
of the pressure can adequately represent this behavior. Ref. [3].t

In classical plasticity, both ideal and hardening. the terms "loading" and "unloading"
are uniquely defined by the change in stresses relative to the current yield condition. When
different loading and unloading pressure-volume relations are used as in Refs. [3-5J the
terms "loading" and "unloading" are no longer uniquely defined since different criteria
are used for the volumetric and deviatoric portions. In an analogous manner. in the present
model different criteria will be used for the volumetric and deviatoric portions.

As a first approach. the material model in unloading was chosen to be defined by the
following expressions for the bulk and shear moduli :

K = K UN = const. (30)

(31 )

where l7(j2) is the unit step function. The unloading bulk modulus K UN is used whenever
the pressure is decreasing p < 0 (unloading) or whenever p > 0 but the pressure is less than
the maximum previous pressure p < Pmax (reloading).

The effect of the step function in equation (31) is that at the same values of P and 12•
the material is stiffer in shear when it is unloading in shear. j2 < O. than when it is loading
in shear, j2 > O. This insures that in an incremental loading-unloading cycle there is
energy dissipation. It is not clear that j2 should be the criterion upon which the choice of
the proper G is based. Further study may indicate that some combination of j2 and P
should be used for this purpose.

t It can be shown that Ihe minimum value of the deviator s 1 occurs when upon unloading. the opposite face
of the yield surface is reached. Upon conlinued unloading, the stress path is along Ihe yield surface.



With the present description of unloading, equations (301 and Ul), the slope \)f the
uniaxial stress--strain curve in unloading. Key + jGc'I' could not be less than K [V unle~s

Gn were permitted to be negative for some range of stresses. This, of course. is objection
able on other grounds. Thus. in order to obtain the sharp break found in the experimental
curve, Fig. 1(a), at low stress levels. some other material description, possibly involving
coupling between deviatoric and volumetric dfects. is required.

For the present model. K CN must be chosen larger than the maximum value of K found
during loading. A second requirement is that ~Kc'i must be greater than the maximum
value of G("I.t A detailed description of the equations applicable to unloading will not be
gIven.

Ie) Numerical results. Typical results for the variable moduli model of this section arc
shown in Figs. 2--5. The parameters used in the computations were l'f) = 0·30, K I K"
- 100. K 2 /Kf) = 4000, ;'1 = 60 and -; = -l33·3. In loading. the uniaxial stress-straw
curve. Fig. 2. has the characteristic reversal of curvature which is often found in experimen
tal curves. Again, the point of inflection occurs at a strain close to 4 per cent, a typical value.
On unloading, with K('.'1,K o = 30. the stress decreases sharply. Although the unloading
portion appears to be a straight line. the slope at low stress levels is in fact less than half the
value at high stress levels, Nevertheless, the distinct tail which is found on unloading l:X

perimentally, Fig. I(al, does not appear. illustrating the inadequacy of the present unloaJing
model at these very low stresses.
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FIG. 5. Triaxial compressi0n test. Variable moduli mixed model. K = Ko+K,e+K 2e2
; G = Go+

'"P+~I' J: (drawn for '0 = 0·30. K, K o = -100. K 2iK o = 4000. ,', = 60. )', = -133-3).

Upon reloading, the initial slope is greater than the final unloading slope since now
j 2 < O. A small hysteresis loop is thus formed. The reloading curve crosses the unloading
curve and approaches the continuation of the initial loading curve as the stress increases.
The table on Fig. 2 is enclosed to distinguish the unloading and reloading curves. If, instead
of increasing the load above the previous maximum, cyclic loading were to take place,
loops similar to the one shown would be produced.

The plot of the radial stress versus axial stress in uniaxial strain is shown in Fig. 3.
On unloading, the curve is actually concave upward at very low stress levels. At higher
stresses, the curve is essentially a straight line. The unloading radial stress is always greater
than the corresponding value in loading. The unloading curve is concave downward and
changes in curvature at (j tiKo = 0·164. where 5 11K o changes sign. The plot has the same
general characteristics as the experimental curves, Fig. l(b), except that in the experimental
unloading curve (j 3 drops off much more sharply as (j 1 is brought back to zero. The reload
ing curve is seen to approach the continuation of the initial loading curve as the stress is
increased above its previous maximum value.

Finally, the deviator 51 is plotted versus the pressure p in Fig. 4 for loading and un
loading-reloading in uniaxial strain. The local slope depends only on the local value of
Poisson's ratio or

d5 1 4G(SI'P)
-=
dp 3K(p)

2(1 - 2\')

1+1'
(32)

On loading. the initial curvature is concave downward. However, the major portion of the
curve is essentially a straight line. On unloading 51 is always less than its corresponding
value in loading and the curve is concave upward. At 51 = O. the slope is continuous, but
the curvature suddenly increases, reflecting the change in sign of j~ in equation (31). Un
loading ends at 51 = -p (so that (j1 = 0) with the slope almost horizontal (or G almost
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zero). On reloading. j~ again becomes negative so that the nevI' path starts out abu\(' the
previous one. The slope is continuous. but the curvature discontinues. when the p-cL\is
is crossed once more. After crossing the unloading curve. the reloading curve reaches the
maximum previous pressure where the sk)pe changes discontinuously (as K goes from
Kl's to Kw ). Thereafter. the reloading curve approaches the continuation of the original
loading curve.

The results for the triaxial compression test are illustrated in Fig. 5, The curves arc
drawn for the same parameters which were used in the uniaxial strain test and for the values
of the lateral stress IJ3,K(l = l).l)4. 0·06. O,Ot\. Each of the cunes loaded directly to failure
(solid) is concave downward and approaches asymptotically the value ((j I - IJ 31m.IX gl\en
by equation l2l). At a higher value of the lateral stress. the stress difference at failure in
creases, as does the initial slope. Also shown in Fig. 5 is the effect of unloading and reloading,
Both the extreme curves were interrupted during loading. unloaded to 17 1 - (J 3 = \l and
reloaded to failure (the dashed curves). The loading portion. almost straight. is slightly
concave upward. The reloading curves. beyond the maximum previous stress, are parallel
to the virgin loading curves and approach the same asymptote. Repeated loading- unload
ing cycles would reproduce the same pattern each cycle: i.e, the strain would continlJousl~

Increase,
On the basis of the present results, one sees that the theoretical combined \ariable

moduli material. when subjected to two special loading configurations, namely the uniaxial
strain and triaxial compression test. reproduces alit the salient features found experimen
tally in these tests. Therefore. the present model offers promise of being able to give a
reasonable representation of real soils in more general loading configurations.

The ability of the present model to match. numerically. real soil data and the process
used to determine the various constants must await the completion of current investiga
tions.

3. COI\IPARISON OF VARIABLE 'IODeLl A;'\D PLASTIC \IODELS

In the previous section. similarities between the variable moduli m()dels and the plastic
models have been mentioned. This section discusses several of these similarities for .,lm
plified models of these types. On the basis of the present study. it appears that the concepts
of a "yield condition" and of "plastic tlO\\" may be contained \vithin the theor~ \)1' the
variable moduli models.

For many materials, empirical eviden.::e suggests the existence of states of stress
land or strainl at which the material undergoes continuously increasll1g deformatlons,vnh
little or no increase in loading. This combination ,.1f stresses at which :low occurs h often
called a "How condition" or a "yidd condition ", When these deformations become
sufficiently large so that unacceptable changes m the geometry nccur. this ~tate h c·~t!led

"failure", Plastic matnial models describe the stress state at WhlCh t10vv begins by .l :leid
condition and the subsequent deformations by a now rule, The variable moduli Inc'dds
describe the behavior of materials as they approach this cnucal state of stress land ,'r
strain) as well as their behavior at the state itself

An interesting illustration of the reJati~)n between plastic aml \anable moduli ;nodeb
can be obtained by a comparison of the simple Prager--Drucker material and the comhll1cd
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variable moduli material with K l = K 2 = O. and Kl\ = Ko . For both models. the Mohr
failure envelope is a straight line. In the Prager-Drucker material, permissible states of
stress may be defined in terms of the yield condition. Ref. [I].

(33)

In the combined variable moduli material. permissible states of stress are those for which
G ::2: O. or. dividing equation (5) by -';1 > 0

The two conditions are identical if

(~:~J = k

and

(34)

(35)

(36)

(37)

The requirement that "I + ,/(3)'/1 < O. equation (19). is thus equivalent to requiring that
'J. < 1 ,.3. There is no obvious requirement for .,' 1 + v 3/(2)~ 1 < O. which would correspond
to the usual restriction on 'J.t

1
':J.<~.

-'\I -

In uniaxial strain. the requirement for initial softening. equation (29). with K 1 = 0
reduces to

(38)

(39)

which upon substitution of equation (36) and {3 = 3(K o/G o) becomes

')

'J.{3 < -=-.
v 3

The identical condition must be satisfied for a Prager-Drucker material to yield in uni
axial strain.

The behavior of both the Prager-Drucker (solid) and the simplified variable moduli
(dashed) materials in both triaxial compression and uniaxial strain is shown in Figs.
6-8. The triaxial test is shown in Fig. 6. Whereas both models fail at the same stress level.
the variable modulus material exhibits more realistic behavior approaching failure.

The stress path. 51 vs. p. in uniaxial strain for the two models is shown in Fig. 7. The
Prager-Drucker yield surface is represented by the two straight lines

2
51 = ±~(k""'3:Xp).

v'
(40)

t Equation t37\ IS not an obvious requirement either: It comes either from the restriction ¢ ::; 90° in plane
strain. or that the slope in uniaxial strain in unloading be positive.
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FiG. 6. Companson of \anablc moduli and plastic models in tnCl:<.l<IJ compresSIon. Solid 11O~ Prag~l

Drucker materiallconstant 1\ "nd (jl. dClshed lin.> - combmed stress· ,trClin "ariabl~ m,)duli modd with
1\,=1\,=0

The elastic portions of the stress path Iwhether loading. unloadIng. or reloadingl ha\l~ the
slope dS l dp = 4 {I. Lnloading ceases \\:hen U! =~t +p = O.

In the variable moduli material. during initwlloading with f... I = f...: = U. the prc:s~ur:

is proportional to the mean strain. p = 3f...'1£" so that equation 1121 for the deviator reduce,
to

O.do j
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(42)

FtG. 8. UniaxIal strain test. Comparison of varIable moduli and Prager-Drucker material Idrawn for
r = O· 2. k = O·} K O. :I = 0·1. K 1 = K 2 = O. K t" = K 0 ).

Differentiating equation (41) with respect to p, and substituting equations (35) and (36)
yields

dS I [4 . ] (2J3) /dP = fj-2-j(3):J. exp -7fkP +2" (3):J.

which at the origin is the elastic value and approaches the slope of the yield condition at
large values of the pressure. The asymptote, although parallel to the Prager-Drucker yield
condition, equation (40), is displaced by an amount

}'IKo
boS I = --_,- = -rx.f3k.

I'i
(43)

Unloading starts with a slope steeper than the elastic slope and approaches a horizontal
tangent as the lower yield surface is neared (G -+ 0). Reloading is again steeper than the
elastic value.

Finally. the stress-strain curve in uniaxial strain is shown in Fig. 8. The Prager-Drucker
curve is either elastic with slope Ko+~Go, or plastic with slope

dO'I] = K
o

(1 ±2J(~)rx.)2 (44)
dE I Plastic (1 + 31X f3)

with the upper (lower) sign applicable to the upper (lower) branches of the yield condition.
Examining the slope in uniaxial strain for initial loading for the combined mixed

moduli material, equation (14), when K 1 = K 2 = 0, one finds

(45)



The initial slope. equation (45) evaluated at 01 = O. is the elastic constrained modulus
/(f) + JG n . At large strains. since ;" 1 < O. the exponential term vanishes and the slope
approaches asymptotically

which is not equal to the plastic slope. equation (-.+41 with the positive sign. The two are
equal at the end points Y. = 0 and x = 2/J .... 3 of the range 0 < 'l. < 2/i .... 3. but the variable
moduli value is slightly less than the plastk value elsewhere in the range. The value.
equation (46). is that which would be obtained for a hybrid materiaL i.e. one which oh"yed
a yield condition of the Coulomb type. but obeyed a flow rule of the von Mises type. Ref.
[10]. For this material there is no plastic change in volume. It is not surprising that in a
material such as the variable moduli material in which the bulk modulus is a function of
the mean strain only and in which shear effects cannot cause an increase in volume. the
slope approaches that of the hybrid plastic material and not that of the Coulomb material
itself

The initial unloading slope is greater than the clastic value. The unloadIng slope
decreases continuously until the minimum value /(11 is approached as (j goes to zero. ThIS
is. of course. much steeper than the plastic unloading value. equation (4.+/. The curve on
reloading again starts steeper than the elastic value.

It IS seen that many of the features found in elastic-plastic models are also contamed
in the present modeL The notable difference between simple plastic models and the variable
moduli model is that in the former there is a sudden yielding. or failure. while in the latter
there is a gradual transition towards failure. In this respect. the present model is analogoLls
to that proposed by Prager. Ref. [II]. or to a strain or work hardening material with cl

null initial yield surface. The strain increments

+ I
t". = ,.
': 2G['\

with GC'i > Gw may be viewed as "elastic" and "plastic" parts. respectively, However.
m contrast to the model in Rd. [II] and hardening plastic models where the devi:ltofic
plastiC strain increment is in the direction of the stress deviator. it is seen from equation
14X, that here the deviatoric "plastic" strain increment is in the direction of the lIlerenU!Il{

in the s~ress deviator. The question of which description is appropriate for soils must
await more general three dimensional tests.

4. CO~CLL:SIOi\iS

A theory of variable moduli materials has been partially developed in this section.
The results obtained for a particular model appears to essentially match those found
experimentally in both the uniaxial strain and triaxial compreSSIOn tests.

Finally. the similaritieS and differences between the present model and plastl":: models
are examined.



Appllcation of variable moduli models to soil behavIOr

REFERENCES

417

[ I} D. C DRt:CKER and W. PRAGER. Soil mechanics and plastic analysis or limit design. Q. app!. Math. 157-165
(19521.

[2J T. Y CHA'>G. H Y Ko. R. F. SCOTT and R A. WESTMA,>N. An mtt'grated approach to the stress analysis of
granular materials. Report on research conducted for the Nallonal Science Foundation. California Institute
of Technolol!\ (1967l.

[3J I. NELSO'> a;)Ci M. L BARO"'. InvestigatIOn of ground shock effects In nonlmear hysteretic media. Report l.
Development of mathematical material model>. l'.S Armv Engineer Waterways Experiment Stallon.
DACA39-67-C·004g Contract Report S-6g-1. March (196b)

[4] S. S. GRIGORIAN. On basic concepts in soil dynamIC,>. Physics AJcrais Mera"()~r .. N. Y. 24. 1057-1071 (1960).
[5J I. G. CAMEROl'; and G. C. SCORGIE. Dynamic> of mtense underground explosions. Jnl. Insl. Math. & Appiles.

4. 194-222 (1968).
[6] \Ii. PRAGER. introductIOn Ee>- Mechanics 01 Continua. Chapter VIII. Ginn (1961).
:7: c. TRUESDELL. Hypo-elasticity. 1. raE. Mech. Anahsis 4.83 (1955)
[8] R. V. WHtTMA,>. Nuclear Geoplosics. Part two-Mechanical properties of earth materials. Defense Atomic

Support Agency. DASA·1285(Ii1. May (1964).
[9J M. T. DA\IS5Ol';. Static and dynamic behaVIOr of a playa silt in one-dimensional compression. Air Force

Weapons Laborat0rY. Tech. Rpt. No. RTD TDR·63-3078. September (1963)
[IOJ H. H. BLEICH and E. HEER. Moving step load on half-space of granular materiaL Proc. Am. Soc. CiL Engrs

89 (1963)
[II} W. PRAGER. On isotropIC materials with continuous transition from elastic to plastic state. Proceedings 01

Fifth International Congress of Applied Mechanics (1938).

(Receil'ed 10 June 1969; rerised 30 March 1970)

A6cTpaKT-Om.jCbIBaeTCSl MaTeMaTll'ieCKaSl MO.Je.1b MaTepI1a,la. B KOTOpOM OCHOBHblH KOHcTlnYTHBHbl1l
3aKOH $lBmleTC$l IHOTponHoH 3aBflCflMOCTblO Me)l(.Jbl npHpalllellfl$lMIl HanpSl)l(CIH1fl H lle$opMaUI1H. He
cYlllecTByeT. B OCHOBHOM. elll1HCTBCHHaSl 3aBI1CI1MOCTb: HanpSl)l(eHl1e-lle$opM3UI1$l. HeT. na)l(e X.JeCb.
YCJlOBl1l1 n,laCTI1'iHOCTl1 B SlBHOM BI111e.

MOllYJ1l1 oObeMal1 C.JBl1ra. O!Il1aKO. SlB.1SleTcSl $YHKUl1SlMII I1HBapl1aHTOB HanpSl)l(eHI1Sl 11. 11.111 lle$op
MaUI1I1.

IACCJleliKeTCSl nOBelleHl1e llByX npOCTblX ,,",01le.1ell 1Toro Tlma. ll.ll1 ':HlYX o6ule 1l0cTynl1blx I1CnblTaHI1H
rpyHTa. Ha npl1MCp n"1!l OllHOOCHolllle$op:V13U!1I1 u TpexoCHoro C)I(aTI1Sl. jl~Sl Ka)l(!lOrO c,ly'iall nony'iaeTClI
Ka'1eCTBeHllall CXOlll1MOCTb CnOBenellueM "1cflcBI1Te,lbHbIX rpyilTOB. n.11l O.JIlOH ....lOnC.111 paCCMaTpl1BaeTcSl.
TaK)I(e. c.~Y'iaH pa3rpy1Kfl fl nOBTopHOii llarp)1Kfl.

nOCJle.::lHlISl MOnCJlb cpaBHfl8aeTcll. TaK)I(e. C npOCTOH ynpyronnaCTfl'ieCKOii ....lOne.llO. B pe1y"lbTaTe
uccnenOBaHflH B03HI1)(aCT OO,lbWflHCT80 nonoouii MeiK;JY nBy"'Sl MOneJlSlMI1. HO TaK)I(e cywecTBylOT 1H<l
'iI1TeJlbHble pa1HIlUhl. Hanpl1Mep HanpaBIlCHlle npl1pallleHI1Sl "nnaCTl1'ieCKOH" )le$opMaUIlI1.


