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APPLICATION OF VARIABLE MODULI MODELS TO
SOIL BEHAVIORT*
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+

Paul Weidlinger. Consulting Engineer. New York

Abstract—A mathematical material model is described tn which the basic constitutive law is an 1sotropic relation
between the increments of stress and strain. No unique stress—strain relation. per se. exists. Neither is there an
explicit yield condition. The bulk and shear moduli. however, are functions of the stress and. or strain invariants.

The behavior of two simple models of this type is examined for the two generally available sotl tests. i.e.
uniaxial strain and triaxial compression. In each case qualitative agreement with the behavior of real soils is
obtained. For one model. unloading and reloading is also considered.

The latter model is also compared with a simple elastic-plastic model. Many similarities between the two
become apparent. but so do significant differences. e.g. the direction of the “plastic’ strain increment.

NOTATION

Cy.Ca. 03 constants

Young's modulus
e mean strain
¢y initial mean strain in triaxial test
€ components of deviatoric strain tensor
1 €303 principal deviatoric strains
G shear modulus
Gy initial shear modulus
Gow shear modulus in unioading
h step function
Js second invariant of stress deviator
K bulk modulus

Ko.K,.K, constants appearing in bulk modulus
Kip. Kyy bulk modulus in loading, unloading
Y constant related to cohesion

P pressure
S components of deviatoric stress tensor
§1482-53 principal deviatoric stresses

u; components of particle velocity

b coefficient in Prager-Drucker yield condition
s constant, 2(1 + vy)/(1—2vq)

TR constants in combined variable shear modulus
Iy Kronecker delta

Ae, measured axial strain in triaxial test

b components of strain tensor

£y in. b3 principal strains

E volumetric strain, 3e

v Poisson’s ratio
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; Poisson's tatio at £ero stress and stram
variahle of integration

components of stress tensor

G, 5.0, principal stresses

angle of internal friction of granulur material
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I. INTRODUCTION

EARLY attempts to mathematically model the behavior of soils under both stauc and or
dynamic loadings were based on the assumption that the soil could be approximated by
a linear elastic material. Such models were of course of extremely limited validity. They
were subsequently replaced by relatively simple elastic—plastic models of the von Mises
or Prager-Drucker. Refl {1, type in which a yield condition was used to describe the
material failure under specific combinations of the shear stresses and pressure. At the
same time, nonlinear elastic models were considered, e.g. Ref. [2], but these also were not
too successful. More recently. in connection with the study of ground shock effects from
explosive sources, a series of more advanced elastic-plastic models have been used to
model the action of the soil over a rather wide variation of applied pressures, Refs. 73-31.
In these models the vield condition depended upon the pressure in a general way und
arbitrary nonlinear pressure-volume relations were used. Different pressure-volume
relations were used for initial loading and for subsequent unloading und reloading. The
various stages in the historical development of these advanced elastic-plastic models are
described in Ref. [3]. Generally, these models reproduce actual soil behavior quite ade-
quately in both static and dynamic uniaxial strain tests. However. as pointed out in Rell
[3]. they do not reproduce the behavior in triaxial compression tests. Although the elastic
ideally plastic models (nonstrain hardening) may give the proper failure stress for a triaxial
test. they do not give the correct stress-strain behavior of the material as it approuches
failure.

The present study is concerned with the development of mathematical models which
contain no exphicit vield condition. but which have buik and shear moduli which arc
functions of the invariants of the stress and or stramn tensors. The behavior of two simple
models of this type are examined for the two generally avatlable soil tests. i.e. uniaxial
strain and triaxial compression. In each case quahtative agreement 1s obtained with the
behavior of real sotls.

Finallv. the second model s compared with a simple elastic-plastic model Many
simifarities between the models become apparent. but there are also significant differences
which are discussed.

2. MODEL DESCRIPTION
I General conditions

The mathematical deseription of the model is in terms of the incremental stress struimn
relations
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where s;; and ¢;; are the deviatoric stress and strain. respectively. and p and e are the
mean stress and strain. In writing equation (1} relating the increments of deviatoric stress
and strain. an implicit assumption is made that the material 1s 1sotropic. Of course. real
soils. being the results of largely directional geological processes. are often anisotropic.
Moreover. the separation of the constitutive relation into deviatoric and volumetric parts.
while particularly convenient. automatically precludes any coupling between them
as is observed in certain granular media. However. for the applications described in
Section 1. equations {1} and (2) will be considered a sufficiently accurate material
description.

Both the shear modulus and the bulk modulus will be assumed to depend upon the
stress and. or strain invariants. In general. different functions G and K apply in initial
loading and subsequent unloading and reloading. The present discussion will be largety
confined to the case of initial loading.

It 1s noted that, even in cases of initial loading, there is not in general a unique stress-
strain relation. The final state of strain depends not only upon the final state of stress. but
also upon the stress path used to reach the final state. In this sense. the variable moduh
material cannot be considered a nonlinear elastic material where such a unique stress—
strain relatior would exist.

The description of a material in terms of incremental stress-strain relations has been
termed a “hypo-elastic material™, Refs. [6 and 7). The present variable moduli material
may be considered a special case of an isotropic hypo-elastic material in which the tensor
relating stress and strain increments depends on the invariants. but not on the stress (or
strain) tensor itself. Of course, the present material 1s in general irreversible even for in-
cremental loading.

In writing equations (1) and (2) the strain rate 1s well defined as the deformation rate
tensor

& = %(ui»j + u;;) (3

even for large strains. For dynamic problems with large rotations Jaumann's definition
of the stress rate. Ref. [6]. should be used. In a general numerical scheme this could be
done. In this paper, however, small strains and rotations as well as quasi-static loading
will be assumed.

A particular model will be discussed from the standpoint of the uniaxial strain and
triaxial compression tests. since these are the soil tests which are generally available.
Typical experimental curves for each test are shown in Fig. 1. Other examples may be seen
in Refs. [8 and 9].

The stress—strain curve in the uniaxial strain case, Fig. 1(a), typically (but not always)
shows a reversal in curvature on loading. On unloading, the slope is almost constant and
is much larger than the slope during initial loading, except for a sharp tail in the low stress
range. Reloading. except for a small hysteresis loop, generally follows the unloading curve
up to the previous maximum stress, and then continues along the initial loading curve.
The lateral stress o5. required to maintain uniaxial strain. is sometimes also measured.
Fig. 1(b).

+ In this paper compressive stress and strain are defined as positive in accordance with the usual Soil Mechanics
Convention.
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Fra. 1 Typical experimentai results,

Typical experimental triaxial results. Fig. lick have the following characteristes:

. The stress-strain curve at a given value of 45 18 concave downward.

. At some point a horizontal tangent. “fatlure™, 18 reached.

. Atu higher value of o, the initial slope and the stress difference at failure. (o, — 713
both increase.

Unloading and reloading miormation in triaxial compression 1s often not availabie,

Existing data indicates that if unloading rbefore fatlure) occurs. the unloading curve i

much steeper than the loading curve. There 1s some gquestion. however, concerning the

behavior of soils in the triaxial configurauoen during reloading.

By plotting the Mohr's circles at faidure for different futeral stresses o, the Muonr
envelope. Fig. 11dL is obtained. This envelope is generally either a straight line (for some
dry sands) or is concave downward (for partally saturated soils.

fn Ref. 13} the models were discussed from the standpoint of the two tests: one in vhich
K und G were both functions of the stram invariants. and a second model in which K
depended upon the volumetric strain but where G depended upon the stress invarianis.
Both models exhibited the salient features of both tests. In the present paper only the futier,
or the combined stress-strain variable maduh model, is Jiscussad.
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2. Combined stress—strain variable moduli model

The combined stress—strain variable moduli model is defined (in initial loading) by a
bulk modulus K which 1s a function of the mean strain ¢. and a shear modulus G which is
a function of first two stress invariants, or more spectfically the pressure p and the square
root of the second invariant of the stress deviator | J5. The simplest such relations which
satisfy the test results described in Section | are

K = Kley= Ko+ K,e+K,e® 14)
G =Gp.Ja = Gotiip+iin s (3)

Equations (4) and (5) may be thought of as the first terms in the series expansions of more
general analytic functions K and G of the stress and strain invariants. The quantity | J5
was used. rather than J; itself. since it is of the same order as p and the components of the
stress tensor. At zero stress and strain, the bulk and shear moduli reduce respectively to
K, and G, the “linear elastic™ values, which are related in terms of the “elastic™ Poisson’s
ratio v,

Ko 24wy _ B )
Go 3(1-2v,) 3

although the ratio K/G is not. in general, constant. With y, positive and ¥, negative. the
material hardens in shear with increasing pressure and softens with increasing shear stress.

The bulk modulus was chosen to be a quadratic in e rather than in p, since the typical
uniaxial strain test curve suggests that the axial stress is a cubic function of the axial strain.
Since the bulk modulus K refers to the incremental pressure~volumetric strain relation.

p = 3K¢ [See equation (2)]

the pressure may be obtained by direct integration of equation (2) as

p= f 3K(8)dE = 3K e+ 3K, 02 + K ye’. (7)
0

Since for initial loading, the pressure is a monotonic function of ¢, a2 unique inverse ¢(p)
exists. Thus, the bulk modulus K may also be written as

K = K(p) = K[e(p)]. (8)
Therefore, equation (4) is equivalent to writing K as a function of p.
(@) Uniaxial strain. By using stress symmetry and vanishing of two of the principal

strain rates, it may be shown that in uniaxial strain

d ) .
Th = 3K 446G = 3[Ko+ Ko+ Kol +4{Go +31p + 71y 2] ©)

Noting that

[1 - N N
Wy =55, = (0, -l

o]
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substitution of equation (7) into equation {9} vields the first order nonhomogeneous di

ferential equation

do }ﬂ

1 - R - . :

e = 2 3V ey = 13K, +4GLi+ JER G b
N\ 1P 3 P

de L ‘ i

~3[2kl(]'1 ~1;—;'*1) + K, !e‘ ~-4K:{; ;o l%» ) }fx‘ i1
Using the mitial condition that stress and stram vanish simuitancosnsiv, the selution for
stress as an explicit function of strain is found by integrating equution (10

2G, T K, K, 1
T SR J

Gy ® ==t Ko+ g B
Pl 2300307 ‘—\(3)}'1'

I—expi2y (317 e

I
|

- i -
> ',L'J i
{

Closed forme <pr 2551008 for the remaining stress quantite 7o are custhy obtamable

from cquations (7) and (

soeslram curve At any pemti o or the lungent

Fnally, from equation (111 the slope of the stress
iconstramed) modulus is found to be

do, P+

d;;1 Py

;
b

i KN, ~=-
{
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{b1 Triuxial stress. In the triaxial stress configuration the second invariant of the stress
deviators 1s simply related to the stress difference by
3
\Jr = o8 = —{e, —0;). {15)
- N\

ol

Using the relation p = (0, + 20¢;}/3 and equation (15). the expression for the shear modulus
becomes

G = Go+la, + 2030+ ——=la, —03). (16)
3 3

Thus. the strain deviator ¢; may be found by integration
¢ :ifﬂ:f‘ 4 _ (17)
2G or 3G +03(27, = VB D+E0 4 3y

since ¢, = 0 when ¢, = ¢; (hydrostatic compression). From equation (17). ¢, is obtained
as an explicit function of the stresses ¢, and o,

1 3Go+ 0327, =By )+, +J3F
e = __ ln[ o+ 032y — VB + o+ 1)]. (18)
71+ 38 Gy +7103)
A necessary condition for G to decrease as o, increases. see equation (16). 1s
7+ V3T <0 (19)

so that the argument of the logarithmic function in equation (18) is always less than one.
and e, is always positive. Alternatively, equation (18) may be written as

1 G
e, = — In (20)
! "t \;"(3)‘,'] [Ginilial:]

where G,,;;.; = Go+ 7,03 is the initial value of G, i.e. the value under hydrostatic conditions.
From equation (20), it is evident that ¢, becomes arbitrarily large (as does ¢;) as G ap-
proaches zero. or {from equation (16)] when

3Go+7103)
(0= 03)pay = —————o—. (21)

1 3 /max " +\/‘/(3)}‘1
It is seen that for (o, — g5) larger than (0, — 63),., - the strain becomes imaginary, that is, the
strain cannot exist. Thus, equation (21) expresses the maximum stress difference in triaxial
compression for a given lateral stress ¢;. It should also be noted that the slope of the tri-

axial stress—strain curve
do, 9KG

de, IK+G EY (22)

1e. the local Young’s modulus, goes to zero when G — (. so that the stress difference
(0 — 03)max TEPresents a point of horizontal tangency. 1.e. “‘failure™.

+ 1t can be shown that equation (22) applies for quite general functions. K and G.
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The measured strain A,y is simply related to the strain deviator ¢ the mean strain o
and the initial thvdrostatic) mean strain ¢, by

At‘,‘l =m0y, ARE]

where ¢, 1s found for the given lateral stress o, by solving equation (7) for ¢ = ¢, with
p = ;. Equations (), (3), (18). (221 {23} and the small positive root ¢ of the cubic equation
(7) completely define the svstem in triaxial stress for all valid swtes a,. g3{(g, =7,
‘GI - U}’nux;

If the Mohr failure envelope were plotted for this material. it 1s evident from cquation
{21) that the plot would be a straight line passing above the origin. similar to the vield
condition for a Prager-Drucker material. This simnlarity will be discussed later in the
paper.

(¢} Choice of constants. If all stress quantities are nondimensionalized with respect to the
initial bulk modulus. K,,. then five parameters remain to fully describe the model. namely.

8{‘)\&‘,'19.'1-;"1«’}\5:' (24
K, K. K.,
The first of these 1s inherently positive and 1s related to the initial Poisson’s ratio v, by
equation (6). The higher order terms in the bulk modulus K, K, and K, K, may he
positive or negative. However, the values are restricted by the condition K > 0. If A, were
negative and K, positive, the requirement that the minimum bulk modulus be positive
requires that
K,

{1()

The fact that »*, > Oand 7, < Ofor physical reasons has already been discussed. as hus the
inequality between them. equation {19).

To further restrict the range of the five material parameters, one requires the initiul
slope in triaxial compression to increase with lateral stress. Differentiating equation (22}
with respect to o,

dE _ 3KHdG doy)+ GPdK day) )

I
9 dea g 13

3

and requiring the result to he positive when 7, = o, vields the mequality
9 TR, + Kooy + Koep i =[G, + 13K e, = 3K 0l + Koed) K 2K » (0 007

For equation {27) to hold in the limit as ¢, approaches zero the inequality
_ HGW TR
Tk k)
must be satistied. Equation {28115 a necessary conditon for the minal slope in the triasin

test to increase with increasing lateral stress « 5.
If the initial curvature in the uniaxial strain test were negative, then the condition

N, 4

i

K, =

must be satisiied.
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Equation (29} is obtained by evaluating the derivative of equation (14) at ¢ = 0. An
attempt to find an analytic expression for the inflection point leads to a transcendental
equation and will not be discussed further.

(d) Unloading and reloading. The model for unloading and subsequent reloading of
variable moduli materials 1s presently at an early stage of development. Experimentally,
Fig. I(a). the uniaxial strain unloading curve has a silope much larger than the loading slope.
which is approximately constant until very low stress levels are reached. Reloading generally
follows the unloading curve up to a point close to the previous maximum stress. If the
stress is increased further, the stress—strain curve approaches the continuation of the
original loading curve.

In a compiletely general three dimensional configuration the terms “loading™ and
“unloading™ no ionger have such clear cut meanings. It i1s possible that the material will
be loading in shear (/3 > 0) and unloading in pressure (p < 0) simultaneously. In fact. if
one studies the o5 — ¢, curve for as simple a geometry as a uniaxial strain test, Fig. 1(b).
it can be shown that on unloading. the deviator s, = ¢, — a,) (originally positive) first
decreases, then changes sign and continues to decrease (increases negatively) until a
minimum is reached at a very low stress level. Beyond this point. s, appears to increase
slightly, i.e. to decrease in absolute value. At the same time, the pressure p = (g, +20,)/3
and the strain ¢, both decrease monotonically during unloading. Clearly, the sharp tails
found experimentally upon unloading at very iow stress levels in both the uniaxial stress—
strain curve, Fig. 1(a), and the radial stress-axial stress curve. Fig. 1(b), are related to this
unusual behavior of s,. Elastic-plastic models in which the yield condition is a function
of the pressure can adequately represent this behavior., Ref. [3].%

In classical plasticity, both ideal and hardening, the terms ‘“‘loading™ and “‘unloading™
are uniquely defined by the change in stresses relative to the current yield condition. When
different loading and unloading pressure-volume relations are used as in Refs. {3-5] the
terms “‘loading” and ‘“‘unloading™ are no longer uniquely defined since different criteria
are used for the volumetric and deviatoric portions. In an analogous manner, in the present
model different criteria will be used for the volumetric and deviatoric portions.

As a first approach, the material model in unloading was chosen to be defined by the
following expressions for the bulk and shear moduli:

K = K 5 = const. (30)
G = Guy = Go+71p+5 WD) (31)

where 1(J,) is the unit step function. The unloading bulk modulus K is used whenever
the pressure is decreasing p < 0 (unloading) or whenever p > 0 but the pressure is less than
the maximum previous pressure p < p,... (reloading).

The effect of the step function in equation (31) is that at the same values of p and J3.
the material is stiffer in shear when it is unloading in shear, J5 < 0. than when it is loading
in shear, J, > 0. This insures that in an incremental loading-unloading cycle there is
energy dissipation. It is not clear that J}, should be the criterion upon which the choice of
the proper G is based. Further study may indicate that some combination of J; and p
should be used for this purpose.

+ 1t can be shown that the minimum value of the deviator s, occurs when upon unloading, the opposite face
of the yield surface is reached. Upon continued unloading, the stress path is along the yield surface.
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With the present description of unloading, equations {30} and (31}, the slope of the
uniaxial stress-strain curve in unloading. K+ 3G . could not be less than Ky unless
Gy were permitted to be negative for some range of stresses. This. of course. is objection-
able on other grounds. Thus. in order to obtain the sharp break found in the experimental
curve, Fig. ita), at low stress levels. some other material description, possibly invoiving
coupling between deviatoric and volumetric effects, is required.

For the present model. Ky must be chosen larger than the maximum value of K found
during loading. A second requirement is that 3K,y must be greater than the maximum
value of Gyt A detailed description of the equations applicable to unloading will not he
given.

{e) Numerical results. Typical results for the variable moduli model of this section arce
shown in Figs. 2-5. The parameters used in the computations were v, = 0:30. K, K, =
— 100, K, K, =4000, vy, = 60 and 7 = —133-3 In loading. the uniaxial stress-strain
curve. Fig. 2, has the characteristic reversal of curvature which is often found in experimen-
tal curves. Again, the point of inflection occurs at a strain close to 4 per cent. a typical value.
On unloading, with K, K, = 30. the stress decreases sharply. Although the unloading
portion appears to be a straight line. the slope at low stress levels is in fact less than half the
value at high stress levels. Nevertheless, the distincet tail which is found on unloading ex-
perimentally. Fig. 1(a), does not appear. illustrating the inadequacy of the present unloading
model at these very low stresses.
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Triaxial compression test. Variable moduli mixed model. K = K+ K ,e+K,e*: G = Gy +
1P+ 71y Jatdrawn for vy = 030, K| Ky = —100. K,/K = 4000. 7, = 60. 5, = —133.3).

Fic.

Upon reloading, the initial slope is greater than the final unloading slope since now
J, < 0. A small hysteresis loop is thus formed. The reloading curve crosses the unloading
curve and approaches the continuation of the initial loading curve as the stress increases.
The table on Fig. 2 is enclosed to distinguish the unloading and reloading curves. If, instead
of increasing the load above the previous maximum, cyclic loading were to take place,
loops similar to the one shown would be produced.

The plot of the radial stress versus axial stress in uniaxial strain is shown in Fig. 3.
On unloading, the curve is actually concave upward at very low stress levels. At higher
stresses, the curve is essenually a straight line. The unloading radial stress is always greater
than the corresponding value in loading. The unloading curve is concave downward and
changes in curvature at ¢,/K, = 0-164. where 5,/K, changes sign. The plot has the same
general characteristics as the experimental curves, Fig. 1(b), except that in the experimental
unloading curve g5 drops off much more sharply as ¢, is brought back to zero. The reload-
ing curve is seen to approach the continuation of the initial loading curve as the stress is
increased above its previous maximum value.

Finally, the deviator s, is plotted versus the pressure p in Fig. 4 for loading and un-
loading—reloading in uniaxial strain. The local slope depends only on the local value of
Poisson's ratio or

ds; 4G(s;.p) 21 - 2v)

= = 2
dp 3K(p) 1+v (32)

On loading, the initial curvature is concave downward. However, the major portion of the
curve is essentially a straight line. On unloading s, is always less than its corresponding
value in loading and the curve is concave upward. At s, = 0, the slope is continuous, but
the curvature suddenly increases, reflecting the change in sign of J; in equation (31). Un-
loading ends at s, = —p (so that ¢, = 0) with the slope almost horizontal (or G almost
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zero). On reloading. J, again becomes negative so that the new path starts out abuve the
previous one. The slope is continuous, but the curvature discontinues, when the p-axis
is crossed once more. After crossing the unloading curve, the reloading curve reaches the
maximum previous pressure where the slope changes discontinuously (as K goes from
Ky to K, p). Thereafter. the reloading curve approaches the continuation of the original
loading curve.

The results for the triaxial compression test are illustrated in Fig. 5. The curves are
drawn for the same parameters which were used in the uniaxial strain test and for the values
of the lateral stress ¢4 N, = 0-04, 0-06, 0-08. Each of the curves loaded directly to fuilure
{solid) is concave downward and approaches asymptotically the value (o, — 631, given
by equation {21). At a higher value of the lateral stress. the stress difference at failure n-
creases, as does the initial slope. Also shown in Fig. 3 is the effect of unloading and reloadmg.
Both the extreme curves were interrupted during loading, unloaded to 7, — ¢y = U and
reloaded to failure {the dashed curves). The loading portion. almost straight. s slightly
concave upward. The refoading curves. beyond the maximum previous stress, are parallel
to the virgin loading curves and approuch the same asymptote. Repeated loading-unload-
ing cycles would reproduce the same pattern each cycle: t.e. the strain would continucusly
mncrease,

On the basis of the present results, one sees that the theoretical combined variable
moduli material. when subjected to two special loading configurations, namely the unaxl
strain and triaxial compression test. reproduces allf the salient features found experimen-
tally in these tests. Therefore. the present model offers promise of being able to give o
reasonable representation of real soils in more general loading configurations.

The ability of the present model to match. numerically. real soil data and the process
used to determine the various constants must await the completion of current investiga-
Hons.

3. COMPARISON OF VARIABLE MODULI AND PLASTIC MODELS

In the previous section. similarities between the variable moduli models and the plustic
models have been mentioned. This section discusses several of these similarities for sim-
plified models of these types. On the basis of the present study. 1t appears that the concepts
of a “yield condition™ and of plastic low™ muy be contained within the theory of the
variable moduli models.

For many materials, empirical evidence suggests the existence of states of stress
tand. or straing at which the matenal undergoes continuously increasing deformations with
little or no increase in loading. This combination of stresses at which fow occurs 15 often
called a “flow condition” or a “vield condition”. When these deformations become
sufficiently large so that unacceptable changes in the geometry occur. this state 15 called
“fatlure”, Plastic material models describe the stress state at which flow beging by u vield
condition and the subsequent deformations by a flow rule. The vanable moduli modeis
describe the behavior of materials as they approach this critical state of stress tand or
strain) as well as their behavior at the state itself.

An interesting tllustration of the relation between piastic and variable modult modebs
can be obtained by a comparison of the simple Prager-Drucker material and the combined

+ Excent for the tal during unloudmye @ uninal ~stram
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variable moduli material with K; = K, = 0. and Ky = K. For both models. the Mohr
failure envelope 1s a straight line. In the Prager-Drucker material, permissible states of
stress may be defined in terms of the vield condition. Ref. [1].

k+3ap— Jy = 0. (33)

In the combined variable moduli material. permaissible states of stress are those for which
G = 0. or. dividing equation (5} by =%, > 0

G ~
( :)‘*'(*'17);7-\.1’220. (34)

i
1

il !

The two conditions are 1dentical if

and

(—L) = 3 (36)
-
The requirement that 7, + /(3)7; < 0. equation (19). is thus equivalent to requiring that

a < 1/, 3. There is no obvious requirement for ', +,/3/2)7; < 0, which would correspond
to the usual restriction on ot

l -

a <

(37)

[ o]
%)

N

In uniaxial strain. the requirement for initial softening. equation (29). with K, =0
reduces to

Gy iyl
Ky A !
which upon substitution of equation (36} and § = 3(K;G,) becomes
2
1 < —=. (39)
V3
The identical condition must be satisfied for a Prager—Drucker material to yield in uni-
axial strain.

The behavior of both the Prager-Drucker (solid} and the simplified variatzle moduli
{dashed) materials in both triaxial compression and uniaxial strain is shown in Figs.
6-8. The triaxial test is shown in Fig. 6. Whereas both models fail at the same stress level,
the variable modulus material exhibits more realistic behavior approaching failure.

The stress path, s, vs. p. in uniaxial strain for the two models is shown in Fig. 7. The
Prager-Drucker yield surface is represented by the two straight lines

2

3

sy = + ——=(k+3uxp). (40)

+ Equation {37)1s not an obvious requirement either: it comes either from the restriction ¢ < 90° in plane
strain. or that the slope in uniaxial strain in unloading be positive.
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FiG. 6. Comparison of variable moduli and plastic models 1in tnaxial compression. Solid line Prager
Drucker material fconstant K and G). dashed line —-combined stress- strain variable modul model with
K, =K,=0

The elastic portions of the stress path (whether loading. unloading. or reloading) have the
slope ds, dp = 4 . Unloading ceases when ¢, = 5, +p = 0.

In the variable moduli material. during initial loading with K| = K, = 0. the pressure
1s proportional to the mean strain. p = 3K, ¢, so that equation (12) for the deviator reduces
to

N -~ - ~ \ A
-G R R 20
s, = ﬁ -— —(j) ——ii_—,—-‘»)t Y —exp | —7 1’ +e g p 41
: - =2 VK ==
(v 20— 1L N - u N - 1
¢
04 4
A g5,
x ;
s
H 02
g
@ 003)

SRESSURE -

35 o7 a8

-- PRAGER-DRUCKER
YIELD CONDITION

Fia. 7 Stress path i uniaxial strain, Comparson of vanable moduli wnd Prager Drucker maieriai
pdrawn for s = 20 = 00Ky =K = K0 = A, 7 K
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F1G. 8. Uniaxial strain test. Comparison of variable moduli and Prager-Drucker material (drawn for
v=02k=01K,.2 =01, K, = K, =0, K¢y = Kyl

Differentiating equation (41) with respect to p, and substituting equations (35) and (36)
yields
ds, 4 , 2/3
?‘; = [5—2\/(3)1} exp (——E—k-p) +2\/(3)a (42)
which at the origin is the elastic value and approaches the slope of the yield condition at
large values of the pressure. The asymptote, although parallel to the Prager—Drucker yield
condition, equation (40), is displaced by an amount
1K
As, = =52 = — Bk (43)

ne
IR

Unloading starts with a slope steeper than the elastic slope and approaches a horizontal
tangent as the lower yield surface is neared (G — 0). Reloading is again steeper than the
elastic value.

Finally. the stress—strain curve in uniaxial strain is shown in Fig. 8. The Prager-Drucker
curve is either elastic with slope K,+3%G,. or plastic with slope

d 1+2./03))? .
k! = o“———‘_‘( = \/(2) ) (44)
dsl Plastic (1 + 3& B)
with the upper (lower) sign applicable to the upper (lower) branches of the yield condition.
Examining the slope in uniaxial strain for initial loading for the combined mixed
moduli material, equation (14), when K, = K, = 0, one finds
do.l Ay

4 2y 2 2
= "Go+ ,lKo exp '}—'181 +K0 1_'_ {_1 (45)
de, 3

i - ! ;
i3 /3=
V3T V3 V3T




itA Ivan Nepsow and MeLvis Lo Baros

The initial slope. equation (435) evaluated at £, = 0. is the elastic constrained modulus
Ko +3G,. At large strains. since 7, < (), the exponential term vanishes and the slope
approaches asymptotically

do,

de,

L
= Kﬂ( L ':i -K) = Kyl 4‘3\'(3)1) {46
ool

" Ter 2l
which is not equal to the plastic slope. equation (44) with the positive sign. The two are
equal at the end points x = Oand x = 2§ 3 of the range 0 - z <« 2.4 3. but the variable
moduli value is slightly less than the plasuc value elsewhere i the range. The value
equation {46), s that which would be obtained for a hybrid material. 1.¢. one which obeved
a yield condition of the Coulomb type. but obeyed a flow rule of the von Mises type. Ref.
[10]. For this material there is no plastic change in volume. It is not surprising that in u
material such as the variable moduli material in which the bulk modulus is a function of
the mean strain only and in which shear effects cannot cause an increase in volume, the
slope approaches that of the hybrid plastic material and not that of the Coulomb material
itself.

The initial unloading slope is greater than the elastic value. The unloading slope
decreases continuously until the minimum value K, is approached as G goes to zero. This
is, of course, much steeper than the plastic unloading value. equation (44). The curve on
reloading again starts steeper than the elastic value

It 1s seen that many of the features found in elastic—plastic models are also contamed
n the present model. The notable difference between simple plastic models and the variable
moduli model is that in the former there is a sudden yielding. or failure. while in the latter
there is a gradual transition towards failure. In this respect. the present model is analogous
to that proposed by Prager, Rell [{1] or to a strain or work hardening material with a
null initial yvield surface. The strain increments

E;ij; = o ‘;‘5,‘ 147}

. Ly,
o (48

with G,y > G p may be viewed as “elastc”™ and “plastic” parts, respectively. However,
in contrast to the model in Ref. [11] and hardening plastic models where the deviatoric
plastic strain increment 1s in the direction of the stress deviator. it is seen from equation
t4¥) that here the deviatoric “plastic’” strain increment is in the direction of the increment
in the siress deviator. The question of which description is appropriate tor soils must
await more general three dimensional tests.

4. CONCLUSIONS

A theory of variable moduli materials has been pariially developed in this section.
The results obtained for a particular model appears to essentially match those found
experimentally in both the uniaxial strain and triaxial compression tests.

Finally, the simiarities and differences between the present model and plastic models
are examined.
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ABcTpakT—OnNuCHIBACTCR MATEMATHYECKAR MOIETh MATEPHANAA, B KOTOPOM OCHOBHbLIA KOHCTHTYTHBHbIN
3AKOH SABJASCTCA M3IOTPONHOH 3@BUCHMOCTBIO MEWIblL AIpUpAUIEHMAMU Hanpskeuunil u nedopmauni. He
CYLIECTBYET. B OCHOBHOM, €QMHCTBEHHAA 3ABUCMMOCTH! HanpsxeHnuwe-neopmauns. Her, nawe xnecs,
YCHOBUA TUIACTHMHOCTH B SBHOM BHIC.

Monynas o0beMa ¥ CIABKIA. OOHAKO. SBISETCH DYHKUHAME MHBADHAHTOB HANPAXEHUs W, uan nedop-
Matuy.

Mcenenxercs nosenekne IByX NPOCTbIX Mozeneit 3TOro THNa, 438 ABYX 00We NOCTYNHBIX UCTbITaHUR
IPYHTA, Ha IPUMED ANA OAHOOCHON nedoPMAlinY H TPEXOCHOTO CkaTHa. ANA KAKIOro CAYHAA NONYHAETCA
KayecTBEHHAN CXOAMMOCTD ¢ TOBEACHHEM JEHCBUTENbHLIX TPYHTOB. 17 OAHOH MOEIN pacCMaTPHBAETCR.
Takke, Cay4al pa3rpy3ky ¥ MOBTOPHOR HArpyiku.

[Tocneanas mMonens CPABHUBAETCH, TAKAKE, C MPOCTOH YNPYTOMIACTHYECKON MoJerro. B pesyabrate
HCCNenOBAHMA BO3HUKAET GONbLWKMHCTBO NOAOGHI MEKY ABYMS MOZEIAMMW, HO TAKKE CYLIECTBYIOT 3HA-
YUTEALHBIE PA3HNULILE, RAMPUMED HATIPABAEHNE NPUPALIEHUS NAACTHYECKONH  nedhopMaunu,



